HITB CTF Singapore 2017 - Write-ups

Informations

Version

By Version Comment
noraj 1.0 Creation

CTF

  • Name : HITB CTF Singapore 2017
  • Website : hitb.xctf.org.cn
  • Type : Online
  • Format : Jeopardy
  • CTF Time : link

Cephalopod - Misc

We've found some strange networktraffic, we suspect it contains a flag.

Download Attachments

binwalk always help:

1
2
3
4
5
6
$ binwalk 2a9c1cdd-2ac0-4b2a-828d-269c6e04ebbb.pcap
DECIMAL HEXADECIMAL DESCRIPTION
--------------------------------------------------------------------------------
26441 0x6749 PNG image, 1754 x 2480, 8-bit/color RGBA, non-interlaced
26577 0x67D1 Zlib compressed data, best compression

So there is probably an image with the flag.

Let's open wireshark:

1
$ wireshark-gtk 2a9c1cdd-2ac0-4b2a-828d-269c6e04ebbb.pcap

Let's check Wikipedia, PNG file signature begins with 89 50 4E 47 0D 0A.

Press CTRL + F, select Hex value as Display filter.

That lead us to frame n°126. (Note: if you search PNG as string you'll find a request for flag.png so we are on the good way)

Right click on the frame, click on Follow TCP Stream, select Raw representation, donc select Entire conversation but 10.0.2.7:39618 -> 10.0.2.10:6800 (2412380 bytes) and then save it as a file.

We can see there is some ceph stuff before the PNG file signature so extract the PNG:

1
$ foremost ceph_and_png

Now we can see the flag:

1
$ display output/png/flag.png

Flag is HITB{95700d8aefdc1648b90a92f3a8460a2c}.

Note: imgur converted the picture into jpeg.

Prime - Mobile

Do you know prime?

Download Attachments

Unpack the application.apk file with assets, resources, compiled code, etc...

1
$ apktool d -r -s ab436242-a5c7-4dd8-b88d-1982be05b3bd.apk

Convert Dex to java class:

1
2
$ d2j-dex2jar ab436242-a5c7-4dd8-b88d-1982be05b3bd/classes.dex
dex2jar ab436242-a5c7-4dd8-b88d-1982be05b3bd/classes.dex -> ./classes-dex2jar.jar

Now take a look at the source:

1
$ jd-gui classes-dex2jar.jar

Or we can also use jadx-gui that give us:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
package com.iromise.prime;
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.Toast;
public class MainActivity extends AppCompatActivity {
private static long N = ((long) Math.pow(10.0d, 16.0d));
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView((int) R.layout.activity_main);
Button start = (Button) findViewById(R.id.start);
Log.i("Number", String.valueOf(N));
start.setOnClickListener(new OnClickListener() {
public void onClick(View view) {
Toast.makeText(MainActivity.this, "HITB{" + MainActivity.this.CalcNumber(MainActivity.N) + "}", 0).show();
}
});
}
private Boolean isOk(long n) {
if (n == 1) {
return Boolean.FALSE;
}
if (n == 2) {
return Boolean.TRUE;
}
for (long i = 2; i * i < n; i++) {
if (n % i == 0) {
return Boolean.FALSE;
}
}
return Boolean.TRUE;
}
private long CalcNumber(long n) {
long number = 0;
for (long i = 1; i <= n; i++) {
if (isOk(i).booleanValue()) {
number++;
}
}
return number;
}
}

This is calculating the number of prime numbers up to 10000000000000000 (10 quadrillion = 10 million billion = 1 × 10^16). So this will take a while before displaying the toast.

I prefer to use a search engine: Prime number theorem and OEIS.

So the flag appears to be HITB{279238341033925} but it wasn't valid.

Update: Shinji Hirako point me the following:

The java code also counts all squares of primes less than or equal to 10000000000000000. To calculate the number of squares of primes less than 10000000000000000, we take the square root of 10000000000000000 which is 10**8 and count how many prime numbers until 10**8. From the diagram you posted, this is 5761455. So answer is 279238341033925 + 5761455 and flag is HITB{279238346795380}

Edit: The reason squares of primes are included is because when it is a square of a prime, the code never enters the for loop. For example, when 4 is passed as the parameter to isOk(), the condition for the for loop is l =2, l*l < n. But l*l = 4 and 4 is not less than 4, hence we never enter the for loop. Same logic for all other squares of primes, but not squares in general.

Share